Inducing an Order on Cellular Automata by a Grouping Operation

نویسندگان

  • Jacques Mazoyer
  • Ivan Rapaport
چکیده

A grouped instance of a cellular automaton (CA) is another one obtained by grouping several states into blocks and by letting interact neighbor blocks. Based on this operation (and on the subautomaton notion), a preorder on the set of one dimensional CA is introduced. It is shown that (CA,) admits a global minimum and that on the bottom of (CA,) very natural equivalence classes are located. These classes remind us the rst two well-known Wolfram ones because they capture global (or dynamical) properties as nilpotency or periodicity. Non trivial properties as the undecidability of and the existence of bounded innnite chains are also proved. Finally, it is shown that (CA,) admits no maximum. This result allows us to conclude that, in a \grouping sense", there is no universal CA. Une instance groupe e d'un automate cellulaire (AC) est un autre obtenu par groupage de plusieurs etats en blocs et par l'interaction \naturelle" de ces blocs. Bas e sur cette op eration (et sur la notion de sous-automate), un pr eordre sur l'ensamble des AC a une dimension est introduit. Il est montr e que (AC,) admet un minimum global et que des classes d'equivalence tr es naturelles se trouvent en bas de (AC,). On retrouve dans ces classes les deux premi eres bien connues de Wolfram qui capturent des propiet es globales (ou dynamiques) comme la nilpotence et la p eriodicit e. Des propiet es non triviales comme l'ind ecidabilit e de et l'existence de cha ^ ines innnies born ees sont aussi prouv ees. Finalement il est montr e que (AC,) n'admet pas de maximum. Cet resultat nous permet de conclure qu'il n'existe pas de AC universel d'un point de vue \groupage". intrins eque en temps r eel. Abstract A grouped instance of a cellular automaton (CA) is another one obtained by grouping several states into blocks and by letting interact neighbor blocks. Based on this operation (and on the subautomaton notion), a preorder on the set of one dimensional CA is introduced. It is shown that (CA,) admits a global minimum and that on the bottom of (CA,) very natural equivalence classes are located. These classes remind us the rst two well-known Wolfram ones because they capture global (or dynamical) properties as nilpotency or periodicity. Non trivial properties as the undecidability of and the existence of bounded innnite chains are also proved. Finally, it is shown that (CA,) …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BI-OBJECTIVE OPTIMIZATION OF RESERVOIR OPERATION BY MULTI-STEP PARALLEL CELLULAR AUTOMATA

Parallel Cellular Automata (PCA) previously has been employed for optimizing bi-objective reservoir operation, where one release is used to meet both objectives. However, if a single release can only be used for one objective, meaning two separate sets of releases are needed, the method is not applicable anymore. In this paper, Multi-Step Parallel Cellular Automata (MSPCA) has been developed fo...

متن کامل

Fast Cellular Automata Implementation on Graphic Processor Unit (GPU) for Salt and Pepper Noise Removal

Noise removal operation is commonly applied as pre-processing step before subsequent image processing tasks due to the occurrence of noise during acquisition or transmission process. A common problem in imaging systems by using CMOS or CCD sensors is appearance of  the salt and pepper noise. This paper presents Cellular Automata (CA) framework for noise removal of distorted image by the salt an...

متن کامل

A fast wallace-based parallel multiplier in quantum-dot cellular automata

Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...

متن کامل

A fast wallace-based parallel multiplier in quantum-dot cellular automata

Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...

متن کامل

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

متن کامل

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998